
I

.,.

(
,%,

L

.,

F’.,..,
,

,,

.

\

.

“*

.,

.

,’.

L

.’

(“
w

.;

.,.’

,.

!. .

T
.

4.

,, ,,
4 ,,

I

A

\

I

32
ii

LA-UFl-7q -32q %

TITLE: ~ORT~ J?ORTHE 1980’s

AUTHOR(S): JeanneAdam
Walt Brainerd

SUBMITTED TO: IFIP 180

8V ~ceptarl~ df th!s reticle, the publi%her rccog 11,.,IS11101II I,.

US. Governnmnt retains a nontrxclus,ve, royally.flc~ I,c!.n-,,!

tO publish or reproch.mr the publisltyd lrMIII of (his con~tioti.

tion, or to af:ow others to do so, fur U.S. (;ovmru)lcnt pur

pose,.

TIM Los Alanros Scienti flc Lahorufory r,,qw!sts !IIJI 1111,IIUI)

hshw iclentifv this article m wOrk l)~rformql 111,(1,,, III,, ~{:,,

pi~of fhc U.S. Drpartmenl of Fm,rgti.

~~q

LOS ALAMOS SCIENTIFIC L/WK)FLWORY
PostOfflcoBox 1663 LosAlamos,NW Mexico87545
An AffkmativeAction/EqualOpportunityEmpbycr

f Orm No, 836 R3

St. No. 262!3
1~t?ll

\
,. ‘\

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images. For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research Library Los Alamos, NM 87544 Phone: (505)667-4448 E-mail: lwwp@lanl.gov

FORTRAN FOR THE 1980’s

Jeanne Adams
National Center for Atmospheric Research

P.O. Box 3000
Boulder, Colorado, 80307, USA

Walt Brainerd
University of California

Los Alamos Scientific Laboratory
P.O. Box 1663

Los Alamos, New Mexico 87545, USA

Technical area: Software

“Neither this paper nor any version close to it has been
offered elsel)here for publication and, if accepted, the paper
will be perso~lally presented in at least one of the 8th World
Computer Con~ress locations by one of the co-authors.”

Preference for presentation: Tokyo, Melbourne, or both

,

Adams/Brainerd “A-

BSTRACT

The new standard Fortran 77 has not been available long but

the American National Standards Institute (ANSI) committee X3J3

responsible for Fortran standardization is already working on

the next.revision. Since the result of this work will be a can-

didate for an international (1S0) standard, it is important that

work being done now become known to all persons interested in

Fortran.

A new set of problems related to the accommodation of re-

lated standards in data base managment and real time process

control, as well as the ever-increasing size of the language,

have caused the standardization committee to consider some new

approaches to the development of the next standard. These new

approaches and many of the new features that probably will be ir

the next Fortran standard are described. It is hoped that this

presentation will stimulate comments and suggestions in time tG

include them before the next standard is finalized.

The authors are the chair of the ANS1 Technical Committee

X3J3 and the officer of the committee responsible for the

management of the technical work, respectively.

T

. Adams/Brainerd -3-

1. INTRODUCTION

A revised Fortran standard was adopted as an American Na-

tional Standard in 1978 [1,2] and the identical specification

was adopted as an international (1S0) standard in 1979. This

language is called “Fortran 77” because its development was com-

pleted in 1977. The technical committee X3J3 of the American

National Standard Institute (ANSI) is currently working on the

next revision of the Fortran standard.

If history repeats itself, the revision that X3J3 is now

preparing eventually will be adopted as an international stan-

dard. Fo~-this reason, the members of X3J3 realize that it is

very important to keep all of those persons throug”nout the world

that are interested in Fortran informed about the problem areas

and possible solutions that are being considered by X3J3. Even

more important are the opinions and suggestions received from

people and organizations. Members of X3J3 have met informally

on three occasions with members of 1S0 in western Europe. These

meetings have been very valuabic to X3J3 and the authors hope

that this presentation will stimulate more interaction between

X3J3 and people in other parts of the world.

One of the reasons that international interaction is so im-

portant during this revision of the Fortran standard is that

language developers are facing a set of problems very different

from those faced during 1970’s and before.

One of the phenomena affecting language development is the

view that a programming language is one tool that must be

Adams/Brainerd -4-

integrated with other software tools, such as editors, graphics

systems, and data base management systems.

by the fact that these software tools often

hardware systems that are distributed. The

This is complicated

are associated with

total software sys-

tem, including the programming language Fort.ran, must operate

effectively in this new environment. Indeed, there are already

standards for real-time process control in a Fortran environment

[3,4,5]. A proposal is now being drafted for Fortran language

extensions to implement the CODASYL model of a data base manage-

ment system [6]. How arc these systems to interface with the

Fortran language system?

Another

different is

language has

are obsolete

reason that this development cycle for Fortran is

that it is becoming recognized that the Fortran

become too large. It contains many ieatures that

or redundant. One of the difficult tasks faced by

X3J3 is to provide a way to remove obsolete language features

and still protect the tremendous economic investment in Fortran

programs and Fortran programmers.

2. LANGUAGE ARCHITECTURE

X3J3 is attempting to address the two major problems of

collateral software systems and an overweight language by

developing a more complex architectural model for the Fortran

language.

One approach that is being considered is a “core-plus-

modules” organization of features. The core is to be the nu-

cleus of Fortran consisting of a complete set of language

--.=—.,

I
*

. ,Adams/Brainerd -5-

features. It is intended that most general purpose applications

could be written in Core Fortran. Modules contain features that

are not in the core, but are used with the core to provide an

enhanced facility.

Three ‘cindsof modules have been identified.

1. an extensions model

2. an obsolete features model

3. applications modules

2.1 Core Criteria

In order to achieve correct placement of various proposed

facilities in the core or a language module, it is necessary to

have a set of criteria for the decision process. The set of

criteria for the placement of features in the core includes the

following.

1.

2.

3.

5,

The core must be a complete language suitable for most

general purpose applications.

The core must be internally consistent and regular.

It must consist of features characterized as reflect-

ing modern software technology.

Programs written in Core Fortran should compile and

execute efficiently.

Adams/Brainerd -6-

6. Features in the core must be portable (i.e., machine

independent).

7. Features should not provide duplicate functionality.

2.2 The Obsolete Features Module

It should be possible to retire features that no longer

serve the Fortran users well. However, this must be done in a

way that does not require that all programs using these features

be converted immediately. This may be accomplished by placing

candidates for retirement in an obsolete features module. This

will serve as a notice that these features will probably not ap-

pear in future versions of the standard, so that the features

can be removed gradually from old programs and not be used in

new programs. It is assumed that marketplace pressures will

keep these features in Fortran implementations as long as it is

economically advantageous to do so.

2.3. The Extensions Module

The extensions module provides a means of introducing

features that may or may not survive in the language, but will

be identical in all Implementations that contain the extensions.

The extensions module also provides a place to put language

features that may be of special importance to a particular class

of problems. These features may not satisfy the criteria for

inclusion in the core, but are common enough th~!t it i! worth

the effort to spec~fy that ail implement’ ons of the feature

m, -

* ,

,Adams/Brainerd -7-

should be identical. A good example of this type of feature is

a collection of sophisticated array processing facilities.

These may be of interest only to those doing large numerical

computation problems on machines with special array processing

capabilities. It may not be practical to implement the features

on small machines.

The extensions module and obsolete

a way for feature~ to enter the language and leave the language

at the end of their useful life with a minimum of impact on the

large software investment in existing programs. Extensions that

prove not to be useful to the users of Fortran may never appear

in the core language. They may be dropped from the extensions

module or moved to the obsolete ❑odule.

2.4 Applications Modules

The new architecture allows for the possibility of many

kinds of applications ❑odules interfacing with the rest of the

language. Most applications ❑odules will specify a standard set

of exte:nal procedures to introduce special purpose facilities.

This will be made easier by the enhanced procedure call mechan-

ism discussed in Section 3.4. Some applications ❑ay introduce

extensions such as those required by the CODASYL Data Base Jour-

nal of Development [6]. Some of the possible applications

modules are those for data base management, graphics, and real

time process control.

The model in Figures 1 ~nd 2 identifies the proposed

processes for standardizing various Fortran features. It is

Adams/Brainerd -8-

hoped that the architecture will allow the development of the

Fortran language to precede dynamically well into the future.

The plans for features to be introduced cautiously and with

attention to the current usage, and the plans for potential ob-

solescence of archaic features should provide a ~onstructive

method for managing growth and change in Fortran.

3. NEW LANGUAGE FEATURES

At this time, it is impossible to describe all of the

features of the next Fortran language standard. However, there

are a few major features that are quite likely to be included,

These are discllssed with a few examples of how some of these

features migt.~ .. used in programs.

It must be emphasized that these features and their

descriptions are tentative. The committee X3J3 may change the

form or content of any of these features, pa]-titularly if signi-

ficant comments about them are communicated to the committee.

The major features that will be discussed are the follow-

ing.

1. control structures

2. data structures and data types

3. array processing

4. enhanced procedure calls

5. program form

Adams/Brainerd -5-

6. precisioil and environmental inquiry

7. dynamic storage allocation

3.1 Control Structures

New control structures are being considered that will en-

courage structured programming techniques. Among these are

looping extensions, a CASE statement, and a means of grouping

procedures.

The form of a DO statement has been modified to enable a

loop to be bracketed by a new DO statement and a REPEAT state-

ment. Examples of the new form of the DO statement are

DO

DO (N+l TIMES)

DO (1 = 1, N+l)

where the keyword DO by itself means DO forever (i.e. , until an

exit is taken). There is an EXIT state-znt that causes a branch

out of the innermost loop. No DO WHILE or DO UNTIL constructs

have been added because these can be built by putting an EXIT

statement at the appropriate point in the loop. For example

DO (WHILE X .GT. EPS)

. . .

can be written as

DO

IF (X .LE. EPS) EXIT

. . .

Adams/Bra inerd -1o-

An example of how a case construct ❑ight look is the following.

SELECT CASE (N+l)

CASE (1,3,9)

CALL A

CASE (7,11)

X=7.6

CALL C

OTHERS

CALL D

END SELECT

Two schemes for grouping procedures have been considered.

One is to allow procedures internal to other procedures, such as

having a function be internal to a subroutine. Variables in the

outer procedure would have a scope that includes the inner pro-

cedure unless that same variable name were also declared in the

inner procedure. The other scheme involves collecting pro-

cedures into a group and allowing variables to be declared

within the group and have a scope that includes all of the pro-

cedures in the group. It would be possible to export declara-

tions and procedures for use outside the group and to import de-

clarations and procedures from other groups.

3.2 Data Structures and Data Types

There is a new capability for defining collections of

heterogeneous types of data so that manipulatiori of the struc-

ture and the various components of the structure is possible. A

Adams/Brainerd -11-

form definition indicates the form of a structure and the names

and attributes of its fields. Variables may then be declared to

have that form.

For example, a structure consisting of a name and

identification number could

FORM: PERSON

CHARACTER*2O NAllE

INTEGER ID_NUMBER

END FOFUY

be declared by

PERSON: K;!KO, IAN, TAXPAYER (100)

The identification number of taxpayer 43 would then be

referenced by TAXPAYER (43) .ID_NUMBER.

One new data type, bit data, has been included. It is

modeled on the character data type. Included are a new type

statement, bit substrings, bit string concatenation, and severai

operat.icns, such as “and”, “or”, “exclusive or”, and “comple-

ment” . A number of bit intrinsic functions have been added al-

so . Examples of bit constants are ‘0’B and ‘O111O1’B.

The IMPLICIT NONE statement removes the default integer and

real typing within a program unit. This means that all vari-

ables in that program must be declared explicitly.

3.3 Array Processing

A basic set of extensions for arr..;processing has been

proposed. In this proposal, Fortran 77 operators (arithmetic,

Adams/3 rainerd -12-

relational, logical, character, and assignment) are extended to

operate element-by-element on arrays that are the same size and

shape. This allows manipulation of arrays as fundamental ob-

jects and facilitates “form~iia translation” for array and matrix

oriented problems. For example, it is possible to replace

REAL A(19,30), B(10,3O), C(I0,30)

DO1O I = 1,10

DO 10 J = 1,10

1.0A(I,J) = B(I,J) * ((IjJ) + 2.7

by

REAL A(10,30), B(10,3O), C(10,3O)

A= B*c~2.7

As is illustrated by the example above, a scalar is an ex-

ception to the rule requiring that operands in an expression all

be the same size and shape. A scalar is treated as an array of

the correct dimer,sions~ all of whose entries are equal to the

scalar value.

Intrinsic functions have been added to accept arrays as ar-

guments. An example is

A= SQRT (ABS(B) + 1.0)

where A and B are the arrays declared above.

Other intrinsic special to arrays are proposed, such as

SUM (A), which yields a scalar sum of all the elements of an ar-

ray A.

.

Adams/Brainerd -13-

Many other array processing features, such as programmer-

defiiled array-valued functions and subarrays are being con-

sidered to determine which set of facilities should be included

in the next Fortran standard.

3.4 Enhanced Procedure Call

Many useful extensions to Fortran have been provided by us-

ing external procedures. Sometimes these procedures are written

in Fortran and sometimes they are written in other languages,

This technique prGvides additional facilities to the user

without extending the langudge.

It is recognized that further enhancements of the procedure

call mechanism will permit even more sophisticated applications

procedures to be made available with only modest extensions to

the language. Some of the ideas being considered are now

described,

An extended form of the procedure call would permit argu-

ments to specified by keywords, as well as positian. For exam-

ple

CALL S(ARG3=K, ARG2=2 *C+l)

Such a call requires that the form of the arguments for S

be described in the calling program. It is proposed that some

kind of declaration such as

PROCEDURE S(REAL ARG1 ❑ 7.6, REAL ARG2, INTEGER ARG3)

Adams/Brainerd -14-

be used to indicate the type and keyword for each argument. It

would also be possible to specify a default value for an argu-

ment omitted in the procedure call. In this example, ARG1 would

have the default value 7.6.

Other ideas are being considered. These include permitting

user-defined generic functions, intrinsic procedures, and a

means for specifying if an argument is read only or read/write.

3.5 Program Form

It has long been recognized that Fortran’s fixed source

program form with labels in columns 1-5, continuation indicator

in column 6, and statements in columns 7-72 is not convenient,

particularly when entering programs at a terminal.

It is almost certain that the next standard will provide

for programs written in a different form and it is likely that

this form will be similar to that described here.

Fortran programs will be written on lines that may be of

different lengths, but any line up to 72 characters mu~t be ac-

cepted. None of the columns in a line have any special signifi-

cance. However, the end of the line is still significant; it

terminates a statement, unless continued, and terminates com-

ments.

An exclamation mark (!) that is not in iicharacter string

begins a comment, which is terminated by the end of a line. A

statement may be continued by placing an ampersand (&) as the

Adams/Brainerd -15-

last character on the line to be continued. The continuation—— — . .

mark must precede a comment, if there is one.

More than one statement may be placed on one line if

separated by a semi-colon (;). Also, local names may contain up

to 31 letters, digits, or underscores (_).

This new form is illustrated by the following exampie.

REAL A (4,3)

DATA / &

11, 21, 31, 41, & ! COL1

12, 22, 32, 42, & ! COL2

13, 23, 33, 43 / ! COL3

IF (X.GT.Y) THEN

T=X; X=Y; Y=T ! SWAP X,Y

END IF

1=3;;; X=Y& ! BAD FORM!;

+Z!!; 77;!

3.6 Precision and Environmental Inquiry

One of the severe difficulties encountered when attempting

to move Fortran programs from one machine to another is that of

precision. The word sizes of two machines may be very dif-

ferent, resulting in the necessity to change computations from

REAL to DOUBLE PRECISION or vice versa. Also, some machines

have more than two floating point precision (e.g., quadruple)

and there is no way to specify these precision i,~Fortran 77.

Adams/Brainerd -16-

A means of specifying the precision of any real variable or

constant in decimal digits is being proposed.

For example

REAL X*4, Y*4, D*8

would indicate that X and Y must have at least 4 decimal digits

of precision and that D must have at least 8 decimal digits of

precison. The constant 2.7P9 would have to be represented with

at least 9 decimal digits of precision. With specifications

such as these, a program can be moved without change to a dif-

ferent machine with the guarantee that the desired results will

be achieved, even if the program is actually run using what one

machine calls “single precision” and what the other calls “dou-

ble precision”.

In order to evaluate the numerical stability of certain

computations, it is necessary to ensure that some calculations

are done using more precision than others. To accommodate this,

a concept of machine precision level is introduced and a mechan-

ism can be provided so that the programmer can say, in effect,

“Do computation A using at least 6 digits of precision and do

computation B using a machine level of precision that is greater

than that used for computation A. Also, let me know how many

digits of precision were actually used for each computation.”

The mechanism for specifying these computations was not worked

out in detail at the time this was written.

A set of intrinsic functions is being added that will allow

the program to determine characteristics of the environment in

.

Adams/Brainerd -17-

which the program is running. These functions will include the

date, the time of day, the largest and smallest integers, the

radix used to represent a real number, etcetera.

3.7 Dynamic Storage Allocation

One of the criteria for the development of Fortran 77 was

that no feature would be included if it required dynamic storage

allocation. This criterion has been abandoned, primarly because

it is recognized that there can be no significant array process-

~ng with such a restriction. Consider, for example,

REAL A(O:1OO)

A(l:N) = A(K+l: K+N)

This is not necessarily equivalent to the DO loop

DO (I = l,N)

A(I) ❑ A(K+I)

REPEAT

Consider the case where K ❑ -1. The DO loop will be equivalent

to

A(1) = A(O)

A(2) = A(l)

A(3) = A(2)

,..

A(N) = A(N-1)

Adams/Btainerd -18-

which is equivalent to

A(l:N) = A(0)

However the assignment

A(l:N) = A(O:N-1)

must produce the same result as

REAL TEMP(i:100)

TEMP = A(O:N-1)

A(l:N) = TEMP

To accomplish this, it may be necesary (or :t least desir-

able) to have a temporary array be created at rul time.

Fortran 77 restrictions on the character date type have

been eliminated. For example, it is now possible to write

CHARACTER C*1OO

C(l:N) = C(K+l : K+N)

This is prohibited in Fortran 77 for the reasons cited above.

Also the following is prohibited in Fortran 77 because the

amount of storage needed to hold the actual argument cannot be

determined at compile time and so may require a temporary to be

created dynamically. This would be permitted in the next stan-

dard.

Aclams/Brainerd -19-

SUBROUTINE S1 (C)

C~CTER C*(*)

CALL S2 (C // ‘Q’)

END

Within a subroutine or function a local array, in addition

to a dummy argument or one in common, may have dimension bounds

declsred using values that are known when the subprogram is en-

tered. These values may be arguments, in common, or in DATA

statements in the subprogram. This is illl~strated in the fol-

lowing program that swaps two real vectors using a local tem-

porary vector.

SUBROUTINE SVAP (A, B, N)

REAL A(N), B(N), TEMP(N)

TEMP ❑ A; A=B; B=TEMP

END

Recursive subprograms have been excluded from Fortran,

partly on the grounds that dynamjc storage allocation is re-

quired. This feature is now being considered for inclusion in

the next standard.

4. THE OBSOLETE FEATURES MODULE

With the introduction of the features described in section

3, there is a certain amount of redundancy in the language. One

of the criteria for the core is that it should not contaiil

redundant features. Therefore, the old features that are re-

placed in functionality by new features are candidates fcl the

Adains/Brainerd -20-

obsolete module. We now look at some of these features and in-

dicate which features replace them.

There is one concept in Fortran that is much better left

out of the core entirely: It is the concept of storage and

storage association. For example, there is no reason that a

double precision variable must occupy exactly twice as much

storage as a real variable, or that a real and integer variable

must occupy exactly the same amount of storage. This was done

in the past to explain the consequences of equivdlencing vari-

ables of different types (via the EQUIVALENCE st.aternent,COMMON

blocks, or actual-dummy argument association). The useful

features of these language constructs (e.g., global data) have

been replaced, but the concept of storage association is being

eliminated from the core.

Several obsolete control mechanisms are being :i!ovedto the

obsolete module. These include the arithmetic IF, the assigned

GO TO, the computed GO TO, alterna~e retur-.s, the ENTRY state-

menttand the statement function. These are being replaced with

the new DO statement with EXIT, the CASE statement, grouping of

procedures, and, of course, the block IF statement of Fortran

77.

The old fixed program source form will be replaced by the

new free form. Incidentally, this is the only case in which a

proposed new feature conflicts with Fortran 77. It is impossi-

ble to have a free form and to interpret column 6 as a continua-

tion indicator.

Adams/Brainerd “2l-

The EQUIf7ALENCE statement and other storage association

features such as ENTRY association and COMMON association are

being put in the obsolete module. The useful aspects of

EQUIVALENCE have been incorporated into data structures, pro-

cedure grouping, and dynamic local arrays.

The DOUBLE PRECISION data type is unnecessary with the

ability to specify precision in decimal digits; therefore, it is

being moved to the obsolete module.

In addition there are several obvious redundancies that al-

ready existed in Fortran 77. The ERR= and END= specifiers are

duplicated by the IOSTAT specifier. The H, X, and apostrophe

edit descriptors are not needed with the T edit descriptor and

the ability to put chai-acter expressions in an input/output

list. With generic functions available, the specific names are

needed no longer.

5. CONCLUSIONS

It should be obvious from this presentation that the next

Fortran standard will be significantly different from Fortran

77. We consider it very important that all interested persons

become aware of these developments before it is too late to

modify them easily, and that any opinions and suggestions be

conveyed to the commitLee. Either of the authors would be

pleased to receive comments.

. .
Adams/Brainerd

REFERENCES

-22-

1.

2.

3.

4.

5.

6.

American National Standard ‘programming Language FORTRAN,

ANSI X3.9-1978, American National Standards Institute, New

York, NY, 1978.

Brainerd, Walt, editor, Fortran 77, Communications of the

ACM, 21, 10 (October, 1978), 806-820.

ANSI ISA 61.1, Industrial Compcter System Fortran Pro-

cedures for Executive Functions, Process Input/Outpu~, and

Bit Manipulation.

ANSI ISA 61.2, Industrial Computer System Fortran Pro-

cedures for File Access and ;.heControl of File Contention.

ANSI ISA 61.3, Industrial Computer System Fortran Pro-

cedures for the Marlagement of Independent Interrelated

tasks.

CODASYL FORTRAN Data Base Facility Journal of Development,

Version 2.0, Ontario, Canada, 1980.

LAUGUAG
I CORE + EXTEUSIeNS

ES
1

FEATuRES

.

CORE

-23-

- tNTEaFAccfir““APPLb APPLl-
CATIOA$ CAmo?ls

f 2 c1APPLl-
CATi W

3

FIGURE I : RELATION OF MODULES TO CORE

-2q -

F

APPLICATON MODULES

SAMPLE PATtIIS OF FORTRAIN ~fATU12ES:
f. EXpEcTED PA~l+ OF MOST FEATURES
2.l~MEOIATE DELETION OF lJNsUCCES5FUL FEATURES

% RESTW?ATION OF OBSOLETE FEATURES

4, APPLKATIONS SYNTAX
5. OBSOLETE ~EATIJ~~s DELE~E~

FIG. 2 PYNAMI= OF FEATLRE pflOCESSING

